Antagonism of an adenosine/ATP receptor in follicular Xenopus oocytes.

نویسندگان

  • B F King
  • S S Wildman
  • A Townsend-Nicholson
  • G Burnstock
چکیده

Follicular Xenopus oocytes possess a novel receptor where both adenosine and ATP activate a cAMP-dependent, nonrectifying K+-current. Five compounds, alpha,beta-methylene ATP (alpha, beta-meATP), 8-(p-sulfophenyl)theophylline (8-SPT), theophylline, 2, 2'-pyridylisatogen tosylate (PIT) and suramin, were tested as antagonists of adenosine- and ATP-activated K+-currents. The descending order of activity (pIC50 values) against adenosine responses was: alpha,beta-meATP (6.72) = 8-SPT (6.68) > theophylline (5.32) > PIT (4.58), whereas suramin was relatively inactive. The blocking actions of alpha,beta-meATP and alkylxanthine compounds were reversible with washout, whereas blockade by PIT was irreversible. These antagonists showed similar blocking activity against ATP responses, except for PIT which was more effective at ATP responses than at adenosine responses. The selectivity of antagonists was tested against cAMP-dependent K+-currents evoked by forskolin and follicle-stimulating hormone (FSH). 8-SPT and theophylline did not inhibit but instead augmented forskolin and FSH responses; this augmentation may be caused by inhibition of phosphodiesterase activity inside follicle cells. On the other hand, alpha,beta-MeATP and PIT inhibited forskolin and FSH responses; both compounds apparently are nonselective antagonists. Thus, only alkylxanthine derivatives (8-SPT and theophylline) were selective antagonists of the novel adenosine/ATP receptor in Xenopus oocytes, whereas alpha,beta-meATP and PIT were nonselective in their blocking actions and suramin was relatively inactive.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adenine nucleotide-induced activation of adenosine A(2B) receptors expressed in Xenopus laevis oocytes: involvement of a rapid and localized adenosine formation by ectonucleotidases.

We recently demonstrated that extracellular ATP effectively activates adenosine (Ade) A(2B) receptors indirectly through a localized rapid conversion to Ade by ectonucleotidases on the membrane surface of C6Bu-1 rat glioma cells. These responses were observed even in the presence of adenosine deaminase (ADA). Here, we demonstrate that such responses indeed occur in A(2B) receptor-expressing Xen...

متن کامل

ATP crossing the cell plasma membrane generates an ionic current in xenopus oocytes.

The presence of ATP within cells is well established. However, ATP also operates as an intercellular signal via specific purinoceptors. Furthermore, nonsecretory cells can release ATP under certain experimental conditions. To measure ATP release and membrane currents from a single cell simultaneously, we used Xenopus oocytes. We simultaneously recorded membrane currents and luminescence. Here, ...

متن کامل

The endogenous cannabinoid anandamide inhibits cromakalim-activated K+ currents in follicle-enclosed Xenopus oocytes.

The effect of the endogenous cannabinoid anandamide on K(+) currents activated by the ATP-sensitive potassium (K(ATP)) channel opener cromakalim was investigated in follicle-enclosed Xenopus oocytes using the two-electrode voltage-clamp technique. Anandamide (1-90 microM) reversibly inhibited cromakalim-induced K(+) currents, with an IC(50) value of 8.1 +/- 2 microM. Inhibition was noncompetiti...

متن کامل

Molecular basis of selective antagonism of the P2X1 receptor for ATP by NF449 and suramin: contribution of basic amino acids in the cysteine-rich loop

BACKGROUND AND PURPOSE The cysteine-rich head region, which is adjacent to the proposed ATP-binding pocket in the extracellular ligand-binding loop of P2X receptors for ATP, is absent in the antagonist-insensitive Dictyostelium receptors. In this study we have determined the contribution of the head region to the antagonist action of NF449 and suramin at the human P2X1 receptor. EXPERIMENTAL ...

متن کامل

Identification of the P2Y(12) receptor in nucleotide inhibition of exocytosis from bovine chromaffin cells.

Nucleotides are released from bovine chromaffin cells and take part in a feedback loop to inhibit further exocytosis. To identify the nucleotide receptors involved, we measured the effects of a range of exogenous nucleotides and related antagonists on voltage-operated calcium currents (I(Ca)), intracellular calcium concentration ([Ca(2+)](i)), and membrane capacitance changes. In comparative pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 285 3  شماره 

صفحات  -

تاریخ انتشار 1998